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Abstract

Debonding of piezoelectric actuators for use in composite structures can result in significant changes to
the static and dynamic response. This important issue is studied in the current work. The refined higher
order theory for composite laminates with embedded/surface bonded piezoelectric sensors and actuators is
extended to incorporate debonding of transducers by partitioning the laminate into debonded and non-
debonded regions. The stress free boundary conditions at the free surfaces are satisfied in the analytical
formulation. Continuity conditions between the debonded and the nondebonded regions, which are non-
trivial for the higher order theory, are formulated and implemented using a penalty approach in the finite
element model. The computational model is efficient and correlation with experimental results is very good.
Numerical results are presented which indicate significant changes in the natural frequencies and mode
shapes due to debonded transducers. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Laminated composite structures with surface bonded/embedded sensors and actuators offer
great potential for static and dynamic control. Essential to designing these advanced structures
are accurate and efficient mathematical modeling techniques. Imperfections, such as debonding of
transducers which may occur during the life of the structure can greatly alter its characteristics and
must also be carefully investigated. Several mathematical models have appeared in the literature for
the analysis of beams and plates with piezoelectric sensing/actuation. These include investigations
based on the classical theory (Crawley and Anderson, 1989 ; Lee, 1990) which is limited to the
analysis of thin plates, first order Mindlin type analyses (Chandrashekhara and Agarwal, 1993 ;
Tzou and Zhong, 1993) and potentially expensive layer-wise theories (Robbins and Reddy, 1991 ;
Lee and Saravanos, 1995). An hybrid theory has also been presented by Mitchel and Reddy (1995).
It is well-known that displacement based refined higher order theories are capable of capturing the
transverse shear deformation through the thickness. These theories are applicable to laminates of
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thicker construction and have been shown to be useful for modeling adaptive composite laminates
(Reddy, 1990 ; Chattopadhyay and Seeley, 1996). Finite element based solution procedures (Chan-
drashekhara and Agarwal, 1993 ; Robbins and Reddy, 1991 ; Chattopadhyay and Seeley, 1996)
are attractive since they can include practical geometries and boundary conditions.

A significant amount of research has also been performed in modeling defects such as delami-
nation in composites. Although three-dimensional approaches (Yang and He, 1994 ; Whitcomb,
1989) are more accurate than two-dimensional theories (Pavier and Clarke, 1996 ; Whitcomb,
1981 ; Kardomateas and Schmueser, 1988 ; Gummadi and Hanagud, 1995), their implementation
can be very expensive for practical applications. The layer-wise approach (Barbero and Reddy,
1991) is an alternative since it is capable of modeling displacement discontinuities. However, the
computational effort increases with the number of plies. Recently, a refined higher order theory,
developed by Chattopadhyay and Gu (1994), was shown to be both accurate and efficient for
modeling delamination in composite plates and shells of moderately thick construction. This theory
has also been shown to agree well with both elasticity solutions (Chattopadhyay and Gu, 1996)
and experimental results (Chattopadhyay and Gu, 1996).

Relatively little attention in the literature has been paid to detailed modeling issues associated
with adaptive composite structures with surface bonded/embedded piezoelectric actuators and
sensors including debonding. In most of the existing work, the actuators are assumed to be perfectly
embedded or bonded to the primary structure. Therefore, issues associated with debonding of
actuators is avoided. However, it has recently been shown by Seeley and Chattopadhyay (1996)
that the control authority of smart structures can be significantly mispredicted in the presence of
debonding. Debonding can also significantly alter the static and dynamic response of composite
structures (Seeley and Chattopadhyay, 1997). Therefore, in the present paper, a general framework
is developed for the analysis of adaptive composite laminates including the presence of debonded
actuators. The refined higher order theory is used to describe the displacement field. Therefore,
the developed theory accurately estimates the transverse shear deformation which is particularly
important in the analysis of thick composites. The formulation also allows for both separation
and slipping of the debonded regions. The analytical model is implemented using the finite element
method which allows practical geometries and boundary conditions to be modeled as well.

In the developed theory, the composite laminate is partitioned into regions representing the
nondebonded zone and portions of the composite laminate both above and below the debonding.
The refined theory is implemented in each region and the stress free boundary conditions are
imposed at the top and bottom surfaces of the laminate as well as at the debonding interface. This
allows several of the higher order functions to be identified in terms of the lower order functions.
Continuity conditions are formulated between the regions. These conditions are enforced in the
finite element implementation using a penalty approach. They theory can be easily generalized to
include multiple piezoelectric sensors, actuators and debondings.

2. Analysis
2.1. Displacement field

The geometry of the adaptive composite laminate, including debonding, is shown in Figs 1 and
2. The general displacement field with parameters indicated in Fig. 2 is defined as follows:
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Fig. 1. Composite laminate cross section.

z,Uj partially debonded I
A midplane \ / piezoelectric actuator k=NPLY —FZZZ7] +— composite plies

.................. composite
——————— substructure

«— piezoelectric plies

Fig. 2. Smart composite plate incorporating piezoelectric layers.

0
U(x,y,2) = u(x,y) +(z—0) <— M) o, y)>+(z—0)2uz(x,y) +(z—0)us (x, )

0
V(x,y,2) = v(x,y) +(z—c¢) (— V) (. y)>+ (z=0) 02 (%, ») + (=) *vs(x, )

W(x,y,z) = w(x,y) (la—c)

where U, V and W are the total displacements, u, v and w denote the midplane displacements of a
point (x,y), the partial derivatives of w represent the rotations of normals to the midplane
corresponding to the slope of the laminate and ¢, and ¢, represent the additional rotations due to
shear deformation about the y and x axes, respectively. The quantities u,, u;, v, and v; represent
higher order functions. This displacement field has the advantage of easily reducing to the well-
known classical theory if the higher order terms are eliminated. The thickness coordinate, z, is
measured from the global midplane of the laminate. Note that ¢ = 0 (Fig. 3) in the region
representing the nondebonded portion of the composite.

2.2. Constitutive relations

The expressions relating the stress, strain, charge and electric field are derived from the electric
enthalpy density function given as follows :
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Fig. 3. Laminate cross section.
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where ¢; and E; are components of the strain tensor and electric field vector, respectively and c;j,
e, and k;; are the elastic, piezoelectric and dielectric permittivity constants, respectively. The stress

and charge are determined as follows :

oH
D= — OE, 3)
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For an orthotropic composite laminate with piezoelectric layers that have orthorhombic mm?
symmetry in the context of laminate theory, the constitutive relationships are simplified as follows :

g Q_ll le 0 0 0 Q_lﬂ _81 —A, ]
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where A are the induced strains (A, = A, = d5, E5). It is important to note that engineering normal
(e,3) and shear (e, () strains are now used in the above equations, &; is set to zero and only the
inplane piezoelectric constants (ds, and ds,) are retained in the context of the current work.
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2.3. Refined displacement field

To account for the effects due to debonding, it is necessary to partition the laminate into several
different regions as shown in Fig. 3. These regions include the nondebonded region Q“, the region
above the debonding (Q') and the region below the debonding (Q“*). The interface between the
nondebonded region and the debonded regions, indicated by the dashed line in Fig. 3, is denoted
S. The general form of the higher order displacement field [eqn (1)] is independently applied to
each of these regions to describe displacements which account for slipping and separation due to
the debonding. However, this displacement field does not necessarily satisfy the condition that the
transverse shear stresses, g, and g5, vanish at the top and bottom surfaces of the plate (z+/4/2) as
well as on the debonded interface surfaces (z = /) in the debonded region. That is,

g4(x,y, £h/2) =0, os(x,y, +h/2) =0

(e (r=udl, d2) (7)
04(x7y5h1)=03 65(x7yah1)=0
(e (r=dl,d) (8)

in which the superscript r corresponds to either the nondebonded region (i), or the regions above
and below the debonding (d1 and d2), respectively. For orthotropic plates, these conditions are
equivalent to the requirement that the corresponding strains be zero on these surfaces. A refined
displacement field is obtained by applying these boundary conditions in each region as follows :

U [ i 8 M}r r J\3 4 r

1 —u+(Z_C) - ax +¢x _(Z_L) 3(dr)2¢x

Ur r _I_( /') au}r +¢r ( r)3 4 (ll)r

=0 Z—C — , | —Z—C ,

2 ay y 3(d1)2 Y
Uy =w (r=u,dl,d2) ©)

where ¢ = [(¢"+b")/2] is the local midplane and d" = b"—da" is the thickness of the region. The
quantities " and b" correspond to the bottom and top coordinates of the local region, respectively,
as shown in Fig. 4. It is important to note that several of the higher order terms in the generalized
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Fig. 4. Local region plate geometry.
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displacement field are either found to be zero or are defined in terms of the lower order functions.
The displacements [eqn (9)] in each region are defined by independent functions with parameters
given as follows :

a h/2 ‘

(L2 et - -
a h/2 .

{b,} = {hl } (x, ) e, r=dl (10b)
a h, ,

{br} = {—h/2}, (X,y)EQ’, r= d2 (IOC)

In the above equations the thickness of the plate, 4, may vary due to the presence of surface bonded
sensors/actuators.

2.4. Continuity conditions

Additional boundary conditions must be imposed to ensure the continuity of displacements at
the interface of the nondebonded and the debonded regions (S) as shown in Fig. 5. A vector of
the displacements is constructed to simplify formulation of the boundary conditions as follows:

U
U=|V| (r=ud,d) (11)
W

The continuity conditions at the interface of the nondebonded and the debonded regions are
imposed as follows:

U“=U" a" <z<min",b") (x,y)eS (12)
U' = U” max(a",a™) <z<b? (x,y)eS (13)
uY = Udl
h/2

[
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Fig. 5. Displacements in cross section.
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The above equations can be exactly satisfied with the classical theory since it assumes a linear
displacement distribution through the thickness. However, the displacement distribution using the
refined theory is nonlinear and therefore eqns (12) and (13) can be satisfied in an average sense as
follows. An error function vector for the first of the above equations is formulated as follows :

e=U"—U" ¢ <z<min(",b™) (x,y)eS (14)

It is desired to minimize the difference between U* and U?' at each point through the thickness in
S. This can be accomplished by first integrating the square of the error through the thickness as
follows :

L
E=2L(e e)dz (15)

where @ and b define the limits of integration through the thickness as indicated in the interval
given in eqn (13). These integration limits must be considered carefully since the presence of surface
bonded actuators/sensors may change the dimensions of the laminate in any of the regions. To
satisfy the continuity conditions, it is desired to find a relationship between the independent
functions in Q“ and Q' which minimizes the error in terms of the functions in the nondebonded
region. Therefore, derivatives of E are taken with respect to the independent functions in Q' and
are set to zero as follows:

0E 0E 0E

' "t owt 0
oE  JE
() )
0x oy
oL = E =0 (16)
opy ooy

Taking derivative and rearranging the above equations leads to the following relationships which
satisfy the continuity conditions :

) ow"
u = u“+(c”—c’)§ +o Pl

U
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where r = d1 and the above relationships correspond to regions Q“ and Q'. The exact formulation
for the constants o, ", and " are given in the Appendix. Identical expressions corresponding to
regions Q“ and Q% are similarly formulated by setting r = d2 for eqns (17a—g). It must be noted
that multiple debondings can be incorporated into the developed theory by defining additional
regions of debonding at arbitrary locations in the laminate.

3. Finite element formulation
3.1. Equations of motion

The finite element method (FEM) is used to implement the refined higher order theory since it
allows for the analysis of practical geometries and boundary conditions. The continuity conditions
formulated in the previous section are also easily implemented using the FEM. The finite element
equations are derived using the discretized form of Hamilton’s principle, which is stated as follows :

t, Ne
ST :J Y [0K¢—dU+oW<]dr =0 (18)

1 e=1

where ¢, and ¢, are the initial and the final times, respectively, and 0K*, 0 U¢ and 6 W* are the element
variations in the kinetic, strain and potentials energies, respectively. The finite element matrices
are formulated as follows :

t, Ne
J Y [OW MW 4 ow K w’ — owe (F* + F5)] = 0 (19)
t

; e=1

where N, is the number of elements, an overdot indicates a derivative with respect to time and the
nodal degrees of freedom of each element, w, are specified as follows::

ow, 0w, T
W, = [un O Wa o oy b, %,} (20)

Elemental nodes for the nondebonded and debonded regions are placed at the local midplanes of
each region as shown in Fig. 6. The mass matrix, M, is formulated as follows.

M = J pN¢"ZN¢ d 4° (21)
P

where p is the density, N° contains the elemental shape functions and Z contains the z dependence
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Fig. 6. Finite element discretization.

of the displacement fields. The stiffness matrix, K¢, including bending and extension terms (subscript
B) and transverse shear terms (subscript T) is expressed as follows :

K = J By AzBs% dA“+J By A{B4 dA° (22)
A° A°
where Ay and A are laminate stiffness matrices and Bg and B relate the strains to the interpolated

functions. Two force vectors are formulated for the distributed load (F¢) and the piezoelectric
forces (Fp).

F = J N&' p(x, y)dA° (23)
A°

o= J N%TABPA dA¢ (24)
A°

The linear finite element equations of motion are expressed as follows:
Mw +Kw = F+Fp (25)

where the quantities M, K, F and w denote the mass and stiffness matrices, the force vector due to
a distributed load and the nodal displacement vector, respectively. The quantity F, is the force
vector due to the piezoelectric actuation. Bilinear shape functions are used for the inplane dis-
placements and rotations (u,v, ¢,, ¢,) while a 12 term cubic polynomial is used for the transverse
displacements (w). The resulting four noded rectangular elements are nonconforming for com-
putational efficiency and contain 28 degrees of freedom each.

3.2. Implementation of continuity conditions

Once the finite element model has been constructed, it is necessary to implement the continuity
conditions to ensure continuity of displacements at the interface of the nondebonded and debonded
regions (S). For simplicity, consider the simple case in which the displacements in a nondebonded
region, Q“ must be identical to the displacements in a debonded region, and Q¢ at the interface



1832 C.E. Seeley, A. Chattopadhyay | International Journal of Solids and Structures 36 (1999) 1823—-1843

_...7..__..1
!
?
=
é
]
o

Cloimomimorem-

—r———
L%

e J

u -+

Q
S

Fig. 7. Finite element discretization of debonding.

between these two regions, S (Fig. 7). Since the displacements are represented in terms of the nodal
quantities in the finite element implementation, this is accomplished by applying the continuity
conditions developed earlier on the unknown displacement quantities associated with the nodes
contained in S. Applying these constraints directly leads to a nonsymmetric set of equations which
has very undesirable consequences in the solution sequence of the finite element model. A more
efficient approach needs to be developed which is outlined below.

The continuity conditions presented in eqns (17a—g), between the nondebonded Q" and debonded
Q7 regions, are applied to the finite element degrees of freedom at the interface of the nondebonded
and debonded regions (S) by first presenting these discretized conditions in matrix form as follows :

Rw =0 (26)
where
W= [u u]” (27)
ow  ow]"
u' = [u" o vt Py w" oy 8)/} (28)
a d a AT
u! = [u ol v g aﬂ (29)

and the expression for R is presented in the Appendix. The superscripts « and d refer to the
corresponding quantities in the nondebonded and debonded regions, respectively, which are also
contained in S. It must be noted that to obtain eqn (26), eqns (17d—g) are multiplied by the
thickness of the debonded region (d“) for consistency of units. Continuity of velocities must also
be maintained. Therefore, eqn (26) is differentiated with respect to time to yield the following
expression

RWw =0 (30)
Next, the discretized potential energy is reformulated as follows:
V=2(—wEKw+wF+wF;)—1p ¥ RRW (31)

where the first term in the parentheses on the right hand side of eqn (32) corresponds to the actual
potential energy while the last term corresponds to the penalty term related to the continuity
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constraints which has been introduced. Minimization of this penalty term leads to the satisfaction
of the continuity conditions. Similarly, the kinetic energy is reformulated as follows:

T = W' Mw+:p, W R'RW (32)

where the first term on the right hand side represents the actual kinetic energy while the second
term is the penalty term related to the continuity constraints. Again, minimization of this penalty
term requires that the continuity conditions be satisfied. The quantities p, and p, are scalar
quantities which are chosen to be on the order of the 1-norm of the stiffness and mass matrices,
respectively. Using Lagrange’s method for a discrete system,

o0 (oT\ 0T N oL or (33)
ot\oq.) oq, ' oq,  <*

where ¢, are the generalized coordinates and Q7 are the generalized forces, the following symmetric
set of augmented equations of motion is obtained (with Q3 = 0)

[M+ p, Pl + [K+ p,Plw = F+F, (34)

where P is the penalty matrix that ensures that the continuity constraints are satisfied and it is
calculated in terms of the nodes contained in S as follows:

P=R'R (35)

The penalty matrix P is then expanded to correspond to the global degrees of freedom (u) and has
the following form :

P= : : ) (36)

The exact formulation for each of the above submatrices is presented in the Appendix.

4. Results
4.1. Experimental correlation

Experiments were conducted to validate the developed theory. Details of the experimental
investigation can be found in a recent work by Seeley and Chattopadhyay (1997). A brief descrip-
tion is provided here for completeness. Composite specimens with bonded piezoelectric transducers
were constructed with various debonding lengths to access the validity of the higher order theory
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Fig. 8. Test specimen configuration.

(Fig. 8). The material selected for the composite substructure was HYE-3574 OH Graphite/Epoxy
fabric. The length of the specimens was 56.3 cm and the width was W = 5.34 cm. Clamped wooden
blocks provided the fixed end conditions which resulted in an effective length of L = 30 cm (Fig.
8) where L, = 3.4 cm and L, = 13.7 cm. The average thickness of the specimens was 1.94 mm and
the ply thickness was approximately 0.161 mm. Active Control Experts QP40N piezoelectric
transducers, which consist of two stacks of two piezoelectric wafers, with dimensions
10.16 x 2.54 x 0.0762 cm, were bonded to the upper and lower surfaces of the composite beams
near the root using an Ecobond 45 clear epoxy adhesive. Material properties of the composite
material and the piezoelectric transducers are presented in Table 1. Debonding was introduced at
the interface between the transducer on the upper surface and the composite substructure using
Teflon tape. The debonding was assumed to be through the width of the transducers with a
nondimensional length of f where

Lp
=— 37
p=— (37
Table 1
Material properties
E, E, G, Gis G P dy,
(GPa) (GPa) U1 (GPa) (GPa) (x10°Kg/m®)  (x107"2m/V)
Gr/Ep 114 9.5 0.30 4.7 2.1 1.5 —

PZT 6.9 6.9 0.31 2.6 2.6 5.0 —179
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Table 2
Natural frequencies (Hz) for Gr/Ep [0°/90°];, beams with piezoelectric transducers

Mode 1 Mode 2
p EXP HOT % error EXP HOT % error
0 25.1 254 1.0 120.6 116.3 3.6
0.06 24.5 24.6 0.3 118.7 115.3 2.9
0.12 24.6 24.2 1.7 119.4 113.1 5.3
0.18 24.5 23.8 2.7 120.3 116.3 3.3

and Ly, is the actual length of the debonding. Data acquisition was accomplished using a Macintosh
7200/90 computer, Labview 3.0 software and a Labview PCI 1200 I/O card. System identification
was obtained using a stochastic method known as the Auto Regressive Moving Average with
eXogenious input model (ARMAX) (Lee and Fassois, 1990 ; Mignolet et al., 1993 ; Mignolet and
Red-Horse, 1994). A 17 x 3 finite element mesh size is used for the computational model of the
nondebonded laminate using the higher order theory (HOT) and additional elements are added
as needed to account for varying lengths of debonding. The natural frequency estimates (HOT)
and experimental results for the first two modes, which are the first and second bending modes,
are presented in Table 2. Composite specimens with a stacking sequence of [0°/90°]5, and four
different debonding lengths of f =0, 0.06, 0.12, 0.18 were studied for the experimental inves-
tigation. Correlation between the HOT and the experimental results is very good. Increasing
debonding length causes the natural frequencies of the first mode to decrease as a result of reducing
the stiffness of the composite structure. However, natural frequencies corresponding to the second
mode actually increase for increasing debonding lengths at larger values of . These nonintuitive
results which are predicted by the HOT are verified experimentally and explained in greater detail
in the next section. Further details of the experiments are also presented in a recent work by Seeley
and Chattopadhyay (1997).

4.2. Frequencies and mode shapes including debonding

The effect of debonded piezoelectric transducers on the natural frequencies and mode shapes of
the composite substructure is investigated in detail next. Results are presented for composite
laminates identical to the ones presented in the previous section. Again, the debonding length (L)
is described by the nondimensional debonding parameter f (f = Lp/L). A 17 x 3 finite element
mesh size is used for the nondebonded laminate and additional elements are added as needed to
account for varying lengths of debonding. The mode shapes with and without debonding of the
piezoelectric transducer on the upper surface, obtained using the present approach, are presented
in Figs 9 and 10 and the frequencies are shown in Table 3. The first five mode shapes in the absence
of debonding are shown in Fig. 9. These mode shapes are typical of the structure being analyzed.
The first two modes represent bending modes, the third and the fourth modes are twist modes and
the fifth mode represents the third bending mode as indicated in the first column. The frequencies
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corresponding to these nondebonded (ff = 0) modes are presented in Table 3. The sequential mode
number of each of the frequencies is shown in parenthesis. As the debonding length is increased
to f = 0.06, the magnitudes of the frequencies decrease slightly. This is due to a small reduction
in the structural stiffness due to debonding. However, no significant changes are observed in the
mode shapes.

Further increase in the debonding length produces significant changes in the mode shapes. The
first several mode shapes for § = 0.18 are shown in Fig. 10. It must be noted that in Fig. 10, the
wire frame elements used to represent the mode shapes are plotted at the midplane of each element.
The midplane corresponding to the debonded portions of the structure is different from the
midplane corresponding to the nondebonded structure. Therefore, the elements in the debonded
regions appear to be disconnected from the rest of the structure. This presentation of the mode
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Fig. 10. (a—f) Open loop mode shapes including debonding obtained using the higher order theory.

shapes is chosen for clarity. Some of these modes, such as the first bending mode (Fig. 10(a))
exhibit global deformation of the substructure. Other modes, such as the second bending mode (Fig.
10(c)), clearly indicates local deformation caused by the debonding of the actuators. Therefore, it
is necessary to study the modes with debonding in greater detail. In Table 3, frequencies cor-
responding to modes which exhibit bending or twisting are indicated using B or T, respectively.
The letters G and L are used to indicate global or local behaviors, respectively, and S and A refer
to symmetric and antisymmetric modes, respectively. For instance, Figs 10(a) and (b) show mode
shapes which have characteristics of the first bending mode (B1). In Fig. 10(a), the deformation is
primarily global in nature (G). However, Fig. 10(b) indicates that the deformation is predominantly
local (L) due to the debonding of the actuator. The mode shape presented in Fig. 10(a) shows that
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Fig. 10. (g-i) Open loop mode shapes including debonding obtained using the higher order theory.

Table 3
Change in open loop frequencies due to debonding (Hz)*

Type B =0.0 B =0.06 B=0.12 B =0.18
Ist bending 25749 (1) GBI 24.958 (1) GBI 24.555 (1) GBIS 24.208 (1) GBIS
128.70 (3) LBIS 55911 (2) LBIA
2nd bending 118.07 (2) GB2 117.01 (2) GB2 11485 (2) GB2 118.12  (3) GB2S
38229 (9) LB2A
Ist twist 15328  (3) GTI 146.26 (3) GTI 13942 (4) GTIS 12255 (4) LTIS
22256 (5) LTIA  146.66 (5) GTIA
2nd twist 31147  (4) GT2 299.02 (4) GT2 266.19 (6) LT2S 27584 (6) LT2S
30281 (7) GT2S  297.55 (7) GT2S
3rd bending 34554  (5) GB3 34198 (5 GB3 34748 (8) GB3 327.82  (8) GB3

*(G) global, (L) local, (B) bending, (T) twist, (S) symmetric, (A) antisymmetric.

both the deformation of the debonded region and the rest of the substructure are in phase indicating
a symmetric (S) model. This is in contrast to the mode shape presented in Fig. 10(b) where the
local and global deformation are out of phase indicating an antisymmetric (A) mode. Therefore,
the mode shapes presented in Figs 10(a) and (b) are denoted GBI1S and LBI1A, respectively. The
frequencies corresponding to these modes are sequential as indicated in Table 3, but their values
differ significantly (24.208 Hz for LB2A and 55.911 Hz for GB2S for = 0.18).
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The presence of debonding can have a significant and counter intuitive influence on the values
of the frequencies corresponding to the global and local counterparts of modes displaying similar
physical characteristics. It is observed that increase in the debonding length introduces local modes.
For example, LB1S (f = 0.12) and LB1A (f = 0.18) correspond to local bending modes which
are absent for smaller values of § (Table 3). Similar observations are made for the higher modes
as well. It is also interesting to note that although there is a general decrease in the values of the
natural frequencies as the debonding length is increased, the value of the frequency corresponding
to the second global bending mode increases (from 114.85-118.12 Hz) as f is increased. Another
point is that for f = 0.12, although the local twist modes are present (LTA1, LT2S), the second
local bending mode is absent. When the second local bending mode (LB2S) does appear at
p = 0.18, it is at a significantly higher frequency than either of the twist modes, as indicated by the
magnitude of the frequency and the sequential mode number of the frequency in parenthesis.
The global and local counterparts of the first twist modes for f = 0.12 and f = 0.18 display
symmetric/antisymmetric behavior while both the global and local counterparts of the second twist
modes are symmetric. These observations indicate that the dynamic characteristics of the composite
laminate can be greatly altered by the presence of debonding of the piezoelectric transducers.
Therefore, careful attention must be paid to the existence of such imperfections in predicting the
dynamic response of such smart structures.

5. Concluding remarks

A general framework has been developed for the analysis of adaptive composite structures with
embedded and surface bonded piezoelectric actuators and sensors in the presence of debonding. A
refined third order theory has been used which accurately captures the transverse shear deformation
through the thickness of the adaptive composite while satisfying the stress free boundary conditions
on the free surfaces, including the debonded region. The presence of pre-existing debonding in
the composite laminate at the interface between the piezoelectric actuators and the underlying
substructure was studied. The results from the developed theory were correlated with experimental
data. Results were also presented to demonstrate the global and local effects of debonding on the
dynamics of the adaptive laminates. The following important observations were made from this
study.

(1) The developed theory provides an accurate, computationally efficient analysis tool for the
study of adaptive composite laminates with piezoelectric sensing and actuation in the presence
of debonding.

(2) The theory is implemented using the finite element method to allow incorporation of practical
geometries, boundary conditions and the presence of discrete piezoelectric transducers.

(3) The developed theory correlates well with experimental results.

(4) Debonding of the piezoelectric layer is shown to cause peeling of the actuator away from the
substructure. This has important implications for failure analysis.

(5) The length of debonding is a critical factor. Increase in debonding length introduces local and
global deformations which have a significant effect on the mode shapes and frequencies.
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Appendix

The geometric parameters used in the satisfaction of the continuity conditions are given as
follows :

o =(—4a* —36a*b—60a’bh*> —36ab® —4b* + 364> (c*)?
+68ab(c*)* +36b*(c*)* 4+ 52a’ ¢! +228a b +228ab? ¢ + 52b° ¢! — 72a* ¢ ¢!
—136abct ¢! —72b% ¢’ —140a(c*)* ¢ — 140b(c*)* ¢? — 1564 (¢)* — 388ab(c)?
— 156b%(¢")? +280ac"(¢)* 4+ 180bc" (¢?)? +140(c*)? (¢*)* + 140a(c?)?
+140b(c?)? —280¢" (%) — 27a (d")? — S1ab(d")? —27b* (d")?
+105ac’(d*)* + 105b¢*(d*)?
—105(c") 2 (d*)?/(3(9a> + 1Tab+9b” — 35ac’ — 35b¢ +35(c!)?) (d")?) (A1)

B =(18a* +34ab+18b> —35ac" —35bc* —35ac’ —35bc? 4 70c" ) (d")* /(2(9a* 4 1 7ab + 9b>
_35ac—35h+35(c) ) (d)?)  (A2)

" =(=30a’c* —110a*bc* —110ab* ¢* —30b° c*
+72a* ¢ +136ab(c*)* +72b* (¢*)* +30a’ c¢? +110a* be? +110ab? ¢
+30b% ¢+ 564 ¢ + 168abc ¢ + 56b* ¢ ¢ — 280a(c*)? ¢! — 280b(c*)* ¢!
—128a*(¢")? —304ab(c)* — 128b%(¢*)* + 140ac* (c¢”)* + 140bc" (¢?)?
+280(c")2 ()2 + 140a(c™)’ + 140b(c”)> — 280¢" (') — 1842 (d")’
— 34ab(d")? — 185> (d")? +T0ac(d") + T0be"(d")
— 706 (d")? + 18a2(d)? + 34ab(d")’ + 18h> (d”)> —35ac"(d”)?
—35bc*(d)* —35ac’(d)* —35bc’(d?)* +T70c" ¢! (d)?)/
(2(9a* 4 17ab +9b* —35ac’ — 35bc” +35(¢")?) (d*)?) (A3)

The exact formulation of the matrices used in the penalty approach to satisfy the continuity
conditions are as follows :
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0 0 1 o 0
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where ¢ = ¢"—¢'.
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