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Abstract

Debonding of piezoelectric actuators for use in composite structures can result in signi_cant changes to
the static and dynamic response[ This important issue is studied in the current work[ The re_ned higher
order theory for composite laminates with embedded:surface bonded piezoelectric sensors and actuators is
extended to incorporate debonding of transducers by partitioning the laminate into debonded and non!
debonded regions[ The stress free boundary conditions at the free surfaces are satis_ed in the analytical
formulation[ Continuity conditions between the debonded and the nondebonded regions\ which are non!
trivial for the higher order theory\ are formulated and implemented using a penalty approach in the _nite
element model[ The computational model is e.cient and correlation with experimental results is very good[
Numerical results are presented which indicate signi_cant changes in the natural frequencies and mode
shapes due to debonded transducers[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Laminated composite structures with surface bonded:embedded sensors and actuators o}er
great potential for static and dynamic control[ Essential to designing these advanced structures
are accurate and e.cient mathematical modeling techniques[ Imperfections\ such as debonding of
transducers which may occur during the life of the structure can greatly alter its characteristics and
must also be carefully investigated[ Several mathematical models have appeared in the literature for
the analysis of beams and plates with piezoelectric sensing:actuation[ These include investigations
based on the classical theory "Crawley and Anderson\ 0878 ^ Lee\ 0889# which is limited to the
analysis of thin plates\ _rst order Mindlin type analyses "Chandrashekhara and Agarwal\ 0882 ^
Tzou and Zhong\ 0882# and potentially expensive layer!wise theories "Robbins and Reddy\ 0880 ^
Lee and Saravanos\ 0884#[ An hybrid theory has also been presented by Mitchel and Reddy "0884#[
It is well!known that displacement based re_ned higher order theories are capable of capturing the
transverse shear deformation through the thickness[ These theories are applicable to laminates of
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thicker construction and have been shown to be useful for modeling adaptive composite laminates
"Reddy\ 0889 ^ Chattopadhyay and Seeley\ 0885#[ Finite element based solution procedures "Chan!
drashekhara and Agarwal\ 0882 ^ Robbins and Reddy\ 0880 ^ Chattopadhyay and Seeley\ 0885#
are attractive since they can include practical geometries and boundary conditions[

A signi_cant amount of research has also been performed in modeling defects such as delami!
nation in composites[ Although three!dimensional approaches "Yang and He\ 0883 ^ Whitcomb\
0878# are more accurate than two!dimensional theories "Pavier and Clarke\ 0885 ^ Whitcomb\
0870 ^ Kardomateas and Schmueser\ 0877 ^ Gummadi and Hanagud\ 0884#\ their implementation
can be very expensive for practical applications[ The layer!wise approach "Barbero and Reddy\
0880# is an alternative since it is capable of modeling displacement discontinuities[ However\ the
computational e}ort increases with the number of plies[ Recently\ a re_ned higher order theory\
developed by Chattopadhyay and Gu "0883#\ was shown to be both accurate and e.cient for
modeling delamination in composite plates and shells of moderately thick construction[ This theory
has also been shown to agree well with both elasticity solutions "Chattopadhyay and Gu\ 0885#
and experimental results "Chattopadhyay and Gu\ 0885#[

Relatively little attention in the literature has been paid to detailed modeling issues associated
with adaptive composite structures with surface bonded:embedded piezoelectric actuators and
sensors including debonding[ In most of the existing work\ the actuators are assumed to be perfectly
embedded or bonded to the primary structure[ Therefore\ issues associated with debonding of
actuators is avoided[ However\ it has recently been shown by Seeley and Chattopadhyay "0885#
that the control authority of smart structures can be signi_cantly mispredicted in the presence of
debonding[ Debonding can also signi_cantly alter the static and dynamic response of composite
structures "Seeley and Chattopadhyay\ 0886#[ Therefore\ in the present paper\ a general framework
is developed for the analysis of adaptive composite laminates including the presence of debonded
actuators[ The re_ned higher order theory is used to describe the displacement _eld[ Therefore\
the developed theory accurately estimates the transverse shear deformation which is particularly
important in the analysis of thick composites[ The formulation also allows for both separation
and slipping of the debonded regions[ The analytical model is implemented using the _nite element
method which allows practical geometries and boundary conditions to be modeled as well[

In the developed theory\ the composite laminate is partitioned into regions representing the
nondebonded zone and portions of the composite laminate both above and below the debonding[
The re_ned theory is implemented in each region and the stress free boundary conditions are
imposed at the top and bottom surfaces of the laminate as well as at the debonding interface[ This
allows several of the higher order functions to be identi_ed in terms of the lower order functions[
Continuity conditions are formulated between the regions[ These conditions are enforced in the
_nite element implementation using a penalty approach[ They theory can be easily generalized to
include multiple piezoelectric sensors\ actuators and debondings[

1[ Analysis

1[0[ Displacement _eld

The geometry of the adaptive composite laminate\ including debonding\ is shown in Figs 0 and
1[ The general displacement _eld with parameters indicated in Fig[ 1 is de_ned as follows ]
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Fig[ 0[ Composite laminate cross section[

Fig[ 1[ Smart composite plate incorporating piezoelectric layers[

U"x\ y\ z# � u"x\ y#¦"z−c# 0−
1

1x
w"x\ y#¦fx"x\ y#1¦"z−c#1u1"x\ y#¦"z−c#2u2"x\ y#

V"x\ y\ z# � v"x\ y#¦"z−c# 0−
1

1x
w"x\ y#¦fy"x\ y#1¦"z−c#1v1"x\ y#¦"z−c#2v2"x\ y#

W"x\ y\ z# � w"x\ y# "0aÐc#

where U\ V and W are the total displacements\ u\ v and w denote the midplane displacements of a
point "x\ y#\ the partial derivatives of w represent the rotations of normals to the midplane
corresponding to the slope of the laminate and fx and fy represent the additional rotations due to
shear deformation about the y and x axes\ respectively[ The quantities u1\ u2\ v1 and v2 represent
higher order functions[ This displacement _eld has the advantage of easily reducing to the well!
known classical theory if the higher order terms are eliminated[ The thickness coordinate\ z\ is
measured from the global midplane of the laminate[ Note that c � 9 "Fig[ 2# in the region
representing the nondebonded portion of the composite[

1[1[ Constitutive relations

The expressions relating the stress\ strain\ charge and electric _eld are derived from the electric
enthalpy density function given as follows ]
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Fig[ 2[ Laminate cross section[

H"oij\ Ei# � 0
1
cijkloijokl−eijkEiojk−

0
1
kijEiEj "1#

where oij and Ei are components of the strain tensor and electric _eld vector\ respectively and cijkl\
eijk\ and kij are the elastic\ piezoelectric and dielectric permittivity constants\ respectively[ The stress
and charge are determined as follows ]

Di � −
1H
1Ei

"2#

sij �
1H
1oij

"3#

For an orthotropic composite laminate with piezoelectric layers that have orthorhombic mm1

symmetry in the context of laminate theory\ the constitutive relationships are simpli_ed as follows ]
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where L are the induced strains "L0 � L1 � d20E2#[ It is important to note that engineering normal
"o0Ð2# and shear "o3Ð5# strains are now used in the above equations\ o2 is set to zero and only the
inplane piezoelectric constants "d20 and d21# are retained in the context of the current work[
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1[2[ Re_ned displacement _eld

To account for the e}ects due to debonding\ it is necessary to partition the laminate into several
di}erent regions as shown in Fig[ 2[ These regions include the nondebonded region Vu\ the region
above the debonding "Vd0# and the region below the debonding "Vd1#[ The interface between the
nondebonded region and the debonded regions\ indicated by the dashed line in Fig[ 2\ is denoted
S[ The general form of the higher order displacement _eld ðeqn "0#Ł is independently applied to
each of these regions to describe displacements which account for slipping and separation due to
the debonding[ However\ this displacement _eld does not necessarily satisfy the condition that the
transverse shear stresses\ s3 and s4\ vanish at the top and bottom surfaces of the plate "z2h:1# as
well as on the debonded interface surfaces "z � h0# in the debonded region[ That is\

s3"x\ y\ 2h:1# � 9\ s4"x\ y\ 2h:1# � 9

"x\ y# $ Vr "r � u\ d0\ d1# "6#

s3"x\ y\ h0# � 9\ s4"x\ y\ h0# � 9

"x\ y# $ Vr "r � d0\ d1# "7#

in which the superscript r corresponds to either the nondebonded region "u#\ or the regions above
and below the debonding "d0 and d1#\ respectively[ For orthotropic plates\ these conditions are
equivalent to the requirement that the corresponding strains be zero on these surfaces[ A re_ned
displacement _eld is obtained by applying these boundary conditions in each region as follows ]

Ur
0 � ur¦"z−cr# 0−

1wr

1x
¦fr

x1−"z−cr#2 3

2"dr#1
fr

x

Ur
1 � vr¦"z−cr# 0−

1wr

1y
¦fr

y1−"z−cr#2 3

2"dr#1
fr

y

Ur
2 � wr "r � u\ d0\ d1# "8#

where cr � ð"ar¦br#:1Ł is the local midplane and dr � br−ar is the thickness of the region[ The
quantities ar and br correspond to the bottom and top coordinates of the local region\ respectively\
as shown in Fig[ 3[ It is important to note that several of the higher order terms in the generalized

Fig[ 3[ Local region plate geometry[
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displacement _eld are either found to be zero or are de_ned in terms of the lower order functions[
The displacements ðeqn "8#Ł in each region are de_ned by independent functions with parameters
given as follows ]

6
ar

br7� 6
h:1

−h:17\ "x\ y# $ Vr\ r � u "09a#

6
ar

br7� 6
h:1

h0 7\ "x\ y# $ Vr\ r � d0 "09b#

6
ar

br7� 6
h0

−h:17\ "x\ y# $ Vr\ r � d1 "09c#

In the above equations the thickness of the plate\ h\ may vary due to the presence of surface bonded
sensors:actuators[

1[3[ Continuity conditions

Additional boundary conditions must be imposed to ensure the continuity of displacements at
the interface of the nondebonded and the debonded regions "S# as shown in Fig[ 4[ A vector of
the displacements is constructed to simplify formulation of the boundary conditions as follows ]

Ur � &
Ur

Vr

Wr' "r � u\ d0\ d1# "00#

The continuity conditions at the interface of the nondebonded and the debonded regions are
imposed as follows ]

Uu � Ud0 ad0 ³ z ¾ min"bu\ bd0# "x\ y# $ S "01#

Uu � Ud1 max"au\ ad1# ³ z ¾ bd1 "x\ y# $ S "02#

Fig[ 4[ Displacements in cross section[
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The above equations can be exactly satis_ed with the classical theory since it assumes a linear
displacement distribution through the thickness[ However\ the displacement distribution using the
re_ned theory is nonlinear and therefore eqns "01# and "02# can be satis_ed in an average sense as
follows[ An error function vector for the _rst of the above equations is formulated as follows ]

e � Uu−Ud0 ad0 ³ z ¾ min"bd0\ bd1# "x\ y# $ S "03#

It is desired to minimize the di}erence between Uu and Ud0 at each point through the thickness in
S[ This can be accomplished by _rst integrating the square of the error through the thickness as
follows ]

E �
0
1 g

b

a

"eTe# dz "04#

where a and b de_ne the limits of integration through the thickness as indicated in the interval
given in eqn "02#[ These integration limits must be considered carefully since the presence of surface
bonded actuators:sensors may change the dimensions of the laminate in any of the regions[ To
satisfy the continuity conditions\ it is desired to _nd a relationship between the independent
functions in Vu and Vd0 which minimizes the error in terms of the functions in the nondebonded
region[ Therefore\ derivatives of E are taken with respect to the independent functions in Vd0 and
are set to zero as follows ]
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Taking derivative and rearranging the above equations leads to the following relationships which
satisfy the continuity conditions ]

ur � uu¦"cu−cr#
1wu

1x
¦arfu

x

vr � vu¦"cu−cr#
1wu

1y
¦arfu
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1wr

1y
�

1wu

1y
¦brfuy
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x � grfu

x

fr
y � grfu

y "06aÐg#

where r � d0 and the above relationships correspond to regions Vu and Vd0[ The exact formulation
for the constants ar\ br\ and gr are given in the Appendix[ Identical expressions corresponding to
regions Vu and Vd1 are similarly formulated by setting r � d1 for eqns "06aÐg#[ It must be noted
that multiple debondings can be incorporated into the developed theory by de_ning additional
regions of debonding at arbitrary locations in the laminate[

2[ Finite element formulation

2[0[ Equations of motion

The _nite element method "FEM# is used to implement the re_ned higher order theory since it
allows for the analysis of practical geometries and boundary conditions[ The continuity conditions
formulated in the previous section are also easily implemented using the FEM[ The _nite element
equations are derived using the discretized form of Hamilton|s principle\ which is stated as follows ]

dP � g
t1

t0

s
Ne

e�0

ðdKe−dUe¦dWeŁ dt � 9 "07#

where t0 and t1 are the initial and the _nal times\ respectively\ and dKe\ dUe and dWe are the element
variations in the kinetic\ strain and potentials energies\ respectively[ The _nite element matrices
are formulated as follows ]

g
t1

t0

s
Ne

e�0

ðdweMew� e¦dweKewe−dwe"Fe¦Fe
P#Ł � 9 "08#

where Ne is the number of elements\ an overdot indicates a derivative with respect to time and the
nodal degrees of freedom of each element\ we

n\ are speci_ed as follows ]

we
n � $un vn wn

1wn

1x
1wn

1y
fxn

fyn%
T

"19#

Elemental nodes for the nondebonded and debonded regions are placed at the local midplanes of
each region as shown in Fig[ 5[ The mass matrix\ Me\ is formulated as follows[

Me � gAe

rNeT
ZNe dAe "10#

where r is the density\ Ne contains the elemental shape functions and Z contains the z dependence
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Fig[ 5[ Finite element discretization[

of the displacement _elds[ The sti}ness matrix\ Ke\ including bending and extension terms "subscript
B# and transverse shear terms "subscript T# is expressed as follows ]

Ke � gAe

BeT
B ABB

e
B dAe¦gAe

BeT
T ATB

e
T dAe "11#

where AB and AT are laminate sti}ness matrices and Be
B and Be

T relate the strains to the interpolated
functions[ Two force vectors are formulated for the distributed load "Fe# and the piezoelectric
forces "Fe

P#[

Fe � gAe

NeT
B pe"x\ y# dAe "12#

Fe
P � gAe

NeT
B ABP

L dAe "13#

The linear _nite element equations of motion are expressed as follows ]

Mw�¦Kw � F¦FP "14#

where the quantities M\ K\ F and w denote the mass and sti}ness matrices\ the force vector due to
a distributed load and the nodal displacement vector\ respectively[ The quantity Fp is the force
vector due to the piezoelectric actuation[ Bilinear shape functions are used for the inplane dis!
placements and rotations "u\ v\ fx\ fy# while a 01 term cubic polynomial is used for the transverse
displacements "w#[ The resulting four noded rectangular elements are nonconforming for com!
putational e.ciency and contain 17 degrees of freedom each[

2[1[ Implementation of continuity conditions

Once the _nite element model has been constructed\ it is necessary to implement the continuity
conditions to ensure continuity of displacements at the interface of the nondebonded and debonded
regions "S#[ For simplicity\ consider the simple case in which the displacements in a nondebonded
region\ Vu\ must be identical to the displacements in a debonded region\ and Vd at the interface
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Fig[ 6[ Finite element discretization of debonding[

between these two regions\ S "Fig[ 6#[ Since the displacements are represented in terms of the nodal
quantities in the _nite element implementation\ this is accomplished by applying the continuity
conditions developed earlier on the unknown displacement quantities associated with the nodes
contained in S[ Applying these constraints directly leads to a nonsymmetric set of equations which
has very undesirable consequences in the solution sequence of the _nite element model[ A more
e.cient approach needs to be developed which is outlined below[

The continuity conditions presented in eqns "06aÐg#\ between the nondebonded Vu and debonded
Vd regions\ are applied to the _nite element degrees of freedom at the interface of the nondebonded
and debonded regions "S# by _rst presenting these discretized conditions in matrix form as follows ]

R	w½ � 9 "15#

where

w½ � ðuu udŁT "16#

uu � $uu fu
x vu fu

y wu 1wu

1x
1wu

1y %
T

"17#

ud � $ud fd
x vd fd

y wd 1wd

1x
1wd

1y %
T

"18#

and the expression for R	 is presented in the Appendix[ The superscripts u and d refer to the
corresponding quantities in the nondebonded and debonded regions\ respectively\ which are also
contained in S[ It must be noted that to obtain eqn "15#\ eqns "06dÐg# are multiplied by the
thickness of the debonded region "dd# for consistency of units[ Continuity of velocities must also
be maintained[ Therefore\ eqn "15# is di}erentiated with respect to time to yield the following
expression

R	w½¾ � 9 "29#

Next\ the discretized potential energy is reformulated as follows ]

V � 0
1
"−wTKw¦wTF¦wTFP#−

0
1
r0w½

TRTRw½ "20#

where the _rst term in the parentheses on the right hand side of eqn "21# corresponds to the actual
potential energy while the last term corresponds to the penalty term related to the continuity
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constraints which has been introduced[ Minimization of this penalty term leads to the satisfaction
of the continuity conditions[ Similarly\ the kinetic energy is reformulated as follows ]

T � 0
1
w¾ TMw¾¦0

1
r1w½¾

TRTRw½¾ "21#

where the _rst term on the right hand side represents the actual kinetic energy while the second
term is the penalty term related to the continuity constraints[ Again\ minimization of this penalty
term requires that the continuity conditions be satis_ed[ The quantities r0 and r1 are scalar
quantities which are chosen to be on the order of the 0!norm of the sti}ness and mass matrices\
respectively[ Using Lagrange|s method for a discrete system\

1

1t 0
1T
1q¾k1−

1T
1qk

¦
1L
1qk

� Qnc
k "22#

where qk are the generalized coordinates and Qnc
k are the generalized forces\ the following symmetric

set of augmented equations of motion is obtained "with Qnc
k � 9#

ðM¦r0PŁw�¦ðK¦r1PŁw � F¦FP "23#

where P is the penalty matrix that ensures that the continuity constraints are satis_ed and it is
calculated in terms of the nodes contained in S as follows ]

P	 � R	TR	 "24#

The penalty matrix P	 is then expanded to correspond to the global degrees of freedom "u# and has
the following form ]

P �

K

H

H

H

H

H

k

= = [

Rii = = = Rij

* *

Rji = = = Rjj

= = [

L

H

H

H

H

H

l

[ "25#

The exact formulation for each of the above submatrices is presented in the Appendix[

3[ Results

3[0[ Experimental correlation

Experiments were conducted to validate the developed theory[ Details of the experimental
investigation can be found in a recent work by Seeley and Chattopadhyay "0886#[ A brief descrip!
tion is provided here for completeness[ Composite specimens with bonded piezoelectric transducers
were constructed with various debonding lengths to access the validity of the higher order theory
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Fig[ 7[ Test specimen con_guration[

"Fig[ 7#[ The material selected for the composite substructure was HYE!2463 OH Graphite:Epoxy
fabric[ The length of the specimens was 45[2 cm and the width was W � 4[23 cm[ Clamped wooden
blocks provided the _xed end conditions which resulted in an e}ective length of L � 29 cm "Fig[
7# where L0 � 2[3 cm and L1 � 02[6 cm[ The average thickness of the specimens was 0[83 mm and
the ply thickness was approximately 9[050 mm[ Active Control Experts QP39N piezoelectric
transducers\ which consist of two stacks of two piezoelectric wafers\ with dimensions
09[05×1[43×9[9651 cm\ were bonded to the upper and lower surfaces of the composite beams
near the root using an Ecobond 34 clear epoxy adhesive[ Material properties of the composite
material and the piezoelectric transducers are presented in Table 0[ Debonding was introduced at
the interface between the transducer on the upper surface and the composite substructure using
Te~on tape[ The debonding was assumed to be through the width of the transducers with a
nondimensional length of b where

b �
LD

L
"26#

Table 0
Material properties

E0 E1 G01\ G02 G12 r d20

"GPa# "GPa# v01 "GPa# "GPa# "×092 Kg:m2# "×09−01 m:V#

Gr:Ep 003 8[4 9[29 3[6 1[0 0[4 *
PZT 5[8 5[8 9[20 1[5 1[5 4[9 −068



C[E[ Seeley\ A[ Chattopadhyay : International Journal of Solids and Structures 25 "0888# 0712Ð0732 0724

Table 1
Natural frequencies "Hz# for Gr:Ep ð9>:89>Ł2s beams with piezoelectric transducers

Mode 0 Mode 1

b EXP HOT ) error EXP HOT ) error

9 14[0 14[3 0[9 019[5 005[2 2[5
9[95 13[4 13[5 9[2 007[6 004[2 1[8
9[01 13[5 13[1 0[6 008[3 002[0 4[2
9[07 13[4 12[7 1[6 019[2 005[2 2[2

and LD is the actual length of the debonding[ Data acquisition was accomplished using a Macintosh
6199:89 computer\ Labview 2[9 software and a Labview PCI 0199 I:O card[ System identi_cation
was obtained using a stochastic method known as the Auto Regressive Moving Average with
eXogenious input model "ARMAX# "Lee and Fassois\ 0889 ^ Mignolet et al[\ 0882 ^ Mignolet and
Red!Horse\ 0883#[ A 06×2 _nite element mesh size is used for the computational model of the
nondebonded laminate using the higher order theory "HOT# and additional elements are added
as needed to account for varying lengths of debonding[ The natural frequency estimates "HOT#
and experimental results for the _rst two modes\ which are the _rst and second bending modes\
are presented in Table 1[ Composite specimens with a stacking sequence of ð9>:89>Ł2s and four
di}erent debonding lengths of b � 9\ 9[95\ 9[01\ 9[07 were studied for the experimental inves!
tigation[ Correlation between the HOT and the experimental results is very good[ Increasing
debonding length causes the natural frequencies of the _rst mode to decrease as a result of reducing
the sti}ness of the composite structure[ However\ natural frequencies corresponding to the second
mode actually increase for increasing debonding lengths at larger values of b[ These nonintuitive
results which are predicted by the HOT are veri_ed experimentally and explained in greater detail
in the next section[ Further details of the experiments are also presented in a recent work by Seeley
and Chattopadhyay "0886#[

3[1[ Frequencies and mode shapes includin` debondin`

The e}ect of debonded piezoelectric transducers on the natural frequencies and mode shapes of
the composite substructure is investigated in detail next[ Results are presented for composite
laminates identical to the ones presented in the previous section[ Again\ the debonding length "LD#
is described by the nondimensional debonding parameter b "b � LD:L#[ A 06×2 _nite element
mesh size is used for the nondebonded laminate and additional elements are added as needed to
account for varying lengths of debonding[ The mode shapes with and without debonding of the
piezoelectric transducer on the upper surface\ obtained using the present approach\ are presented
in Figs 8 and 09 and the frequencies are shown in Table 2[ The _rst _ve mode shapes in the absence
of debonding are shown in Fig[ 8[ These mode shapes are typical of the structure being analyzed[
The _rst two modes represent bending modes\ the third and the fourth modes are twist modes and
the _fth mode represents the third bending mode as indicated in the _rst column[ The frequencies
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Fig[ 8[ "aÐe# Mode shapes with no debonding obtained using the higher order theory[

corresponding to these nondebonded "b � 9# modes are presented in Table 2[ The sequential mode
number of each of the frequencies is shown in parenthesis[ As the debonding length is increased
to b � 9[95\ the magnitudes of the frequencies decrease slightly[ This is due to a small reduction
in the structural sti}ness due to debonding[ However\ no signi_cant changes are observed in the
mode shapes[

Further increase in the debonding length produces signi_cant changes in the mode shapes[ The
_rst several mode shapes for b � 9[07 are shown in Fig[ 09[ It must be noted that in Fig[ 09\ the
wire frame elements used to represent the mode shapes are plotted at the midplane of each element[
The midplane corresponding to the debonded portions of the structure is di}erent from the
midplane corresponding to the nondebonded structure[ Therefore\ the elements in the debonded
regions appear to be disconnected from the rest of the structure[ This presentation of the mode
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Fig[ 09[ "aÐf# Open loop mode shapes including debonding obtained using the higher order theory[

shapes is chosen for clarity[ Some of these modes\ such as the _rst bending mode "Fig[ 09"a##
exhibit global deformation of the substructure[ Other modes\ such as the second bending mode "Fig[
09"c##\ clearly indicates local deformation caused by the debonding of the actuators[ Therefore\ it
is necessary to study the modes with debonding in greater detail[ In Table 2\ frequencies cor!
responding to modes which exhibit bending or twisting are indicated using B or T\ respectively[
The letters G and L are used to indicate global or local behaviors\ respectively\ and S and A refer
to symmetric and antisymmetric modes\ respectively[ For instance\ Figs 09"a# and "b# show mode
shapes which have characteristics of the _rst bending mode "B0#[ In Fig[ 09"a#\ the deformation is
primarily global in nature "G#[ However\ Fig[ 09"b# indicates that the deformation is predominantly
local "L# due to the debonding of the actuator[ The mode shape presented in Fig[ 09"a# shows that
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Fig[ 09[ "gÐi# Open loop mode shapes including debonding obtained using the higher order theory[

Table 2
Change in open loop frequencies due to debonding "Hz#a

Type b � 9[9 b � 9[95 b � 9[01 b � 9[07

0st bending 14[638 "0# GB0 13[847 "0# GB0 13[444 "0# GB0S 13[197 "0# GB0S
017[69 "2# LB0S 44[800 "1# LB0A

1nd bending 007[96 "1# GB1 006[90 "1# GB1 003[74 "1# GB1 007[01 "2# GB1S
271[18 "8# LB1A

0st twist 042[17 "2# GT0 035[15 "2# GT0 028[31 "3# GT0S 011[44 "3# LT0S
111[45 "4# LT0A 035[55 "4# GT0A

1nd twist 200[36 "3# GT1 188[91 "3# GT1 155[08 "5# LT1S 164[73 "5# LT1S
291[70 "6# GT1S 186[44 "6# GT1S

2rd bending 234[43 "4# GB2 230[87 "4# GB2 236[37 "7# GB2 216[71 "7# GB2

a "G# global\ "L# local\ "B# bending\ "T# twist\ "S# symmetric\ "A# antisymmetric[

both the deformation of the debonded region and the rest of the substructure are in phase indicating
a symmetric "S# model[ This is in contrast to the mode shape presented in Fig[ 09"b# where the
local and global deformation are out of phase indicating an antisymmetric "A# mode[ Therefore\
the mode shapes presented in Figs 09"a# and "b# are denoted GB0S and LB0A\ respectively[ The
frequencies corresponding to these modes are sequential as indicated in Table 2\ but their values
di}er signi_cantly "13[197 Hz for LB1A and 44[800 Hz for GB1S for b � 9[07#[
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The presence of debonding can have a signi_cant and counter intuitive in~uence on the values
of the frequencies corresponding to the global and local counterparts of modes displaying similar
physical characteristics[ It is observed that increase in the debonding length introduces local modes[
For example\ LB0S "b � 9[01# and LB0A "b � 9[07# correspond to local bending modes which
are absent for smaller values of b "Table 2#[ Similar observations are made for the higher modes
as well[ It is also interesting to note that although there is a general decrease in the values of the
natural frequencies as the debonding length is increased\ the value of the frequency corresponding
to the second global bending mode increases " from 003[74Ð007[01 Hz# as b is increased[ Another
point is that for b � 9[01\ although the local twist modes are present "LTA0\ LT1S#\ the second
local bending mode is absent[ When the second local bending mode "LB1S# does appear at
b � 9[07\ it is at a signi_cantly higher frequency than either of the twist modes\ as indicated by the
magnitude of the frequency and the sequential mode number of the frequency in parenthesis[
The global and local counterparts of the _rst twist modes for b � 9[01 and b � 9[07 display
symmetric:antisymmetric behavior while both the global and local counterparts of the second twist
modes are symmetric[ These observations indicate that the dynamic characteristics of the composite
laminate can be greatly altered by the presence of debonding of the piezoelectric transducers[
Therefore\ careful attention must be paid to the existence of such imperfections in predicting the
dynamic response of such smart structures[

4[ Concluding remarks

A general framework has been developed for the analysis of adaptive composite structures with
embedded and surface bonded piezoelectric actuators and sensors in the presence of debonding[ A
re_ned third order theory has been used which accurately captures the transverse shear deformation
through the thickness of the adaptive composite while satisfying the stress free boundary conditions
on the free surfaces\ including the debonded region[ The presence of pre!existing debonding in
the composite laminate at the interface between the piezoelectric actuators and the underlying
substructure was studied[ The results from the developed theory were correlated with experimental
data[ Results were also presented to demonstrate the global and local e}ects of debonding on the
dynamics of the adaptive laminates[ The following important observations were made from this
study[

"0# The developed theory provides an accurate\ computationally e.cient analysis tool for the
study of adaptive composite laminates with piezoelectric sensing and actuation in the presence
of debonding[

"1# The theory is implemented using the _nite element method to allow incorporation of practical
geometries\ boundary conditions and the presence of discrete piezoelectric transducers[

"2# The developed theory correlates well with experimental results[
"3# Debonding of the piezoelectric layer is shown to cause peeling of the actuator away from the

substructure[ This has important implications for failure analysis[
"4# The length of debonding is a critical factor[ Increase in debonding length introduces local and

global deformations which have a signi_cant e}ect on the mode shapes and frequencies[
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Appendix

The geometric parameters used in the satisfaction of the continuity conditions are given as
follows ]

ad �"−3a3−25a2b−59a1b1−25ab2−3b3¦25a1"cu#1

¦57ab"cu#1¦25b1"cu#1¦41a2cd¦117a1bcd¦117ab1cd¦41b2cd−61a1cucd

−025abcucd−61b1cucd−039a"cu#1cd−039b"cu#1cd−045a1"cd#1−277ab"cd#1

−045b1"cd#1¦179acu"cd#1¦079bcu"cd#1¦039"cu#1"cd#1¦039a"cd#2

¦039b"cd#2−179cu"cd#2−16a1"du#1−40ab"du#1−16b1"du#1

¦094acd"du#1¦094bcd"du#1

−094"cd#1"du#1:"2"8a1¦06ab¦8b1−24acd−24bcd¦24"cd#1#"du#1# "A0#

bd �"07a1¦23ab¦07b1−24acu−24bcu−24acd−24bcd¦69cucd#"dd#1:"1"8a1¦06ab¦8b1

−24acd−24bcd¦24"cd#1#"du#1# "A1#

gd �"−29a2cu−009a1bcu−009ab1cu−29b2cu

¦61a1cu1¦025ab"cu#1¦61b1"cu#1¦29a2cd¦009a1bcd¦009ab1cd

¦29b2cd¦45a1cucd¦057abcucd¦45b1cucd−179a"cu#1cd−179b"cu#1cd

−017a1"cd#1−293ab"cd#1−017b1"cd#1¦039acu"cd#1¦039bcu"cd#1

¦179"cu#1"cd#1¦039a"cd#2¦039b"cd#2−179cu"cd#2−07a1"du#1

−23ab"du#1−07b1"du#1¦69acd"du#1¦69bcd"du#1

−69cd1"du#1¦07a1"dd#1¦23ab"dd#1¦07b1"dd#1−24acu"dd#1

−24bcu"dd#1−24acd"dd#1−24bcd"dd#1¦69cucd"dd#1#:

"1"8a1¦06ab¦8b1−24acd−24bcd¦24"cd#1#"du#1# "A2#

The exact formulation of the matrices used in the penalty approach to satisfy the continuity
conditions are as follows ]
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R	 �

K

H

H

H

H

H

H

H

H

k

0 ar 9 9 9 c? 9 −0 9 9 9 9 9 9

9 drgr 9 9 9 9 9 9 −dr 9 9 9 9 9

9 9 0 ar 9 9 c? 9 9 −0 9 9 9 9

9 9 9 drgr 9 9 9 9 9 9 −dr 9 9 9

9 9 9 9 0 9 9 9 9 9 9 −0 9 9

9 drbr 9 9 9 dr 9 9 9 9 9 9 −dr 9

9 9 9 drbr 9 9 dr 9 9 9 9 9 9 −dr

L

H

H

H

H

H

H

H

H

l

"A3#

Rii �

K

H

H

H

H

H

H

H

H

k

0 ar 9 9 9 c? 9

ar1¦dr1"br1¦gr1# 9 9 9 arc?¦brdr1 9
0 aj 9 9 c?

ar1¦dr1"br1¦gr1# 9 9 arc?¦brdr1

0 9 9

sym c?1¦dr1 9

c?1¦dr1

L

H

H

H

H

H

H

H

H

l

"A4#

Rjj �

K

H

H

H

H

H

H

H

H

k

0 9 9 9 9 9 9

dr1 9 9 9 9 9

0 9 9 9 9

dr1 9 9 9

0 9 9

sym dr1 9

dr1

L

H

H

H

H

H

H

H

H

l

"A5#

Rij �

K

H

H

H

H

H

H

H

H

k

−0 9 9 9 9 9 9

−ar −grdr1 9 9 9 −brdr1 9

9 9 −0 9 9 9 9

9 9 −ar −grdr1 9 9 −brdr1

9 9 9 9 −0 9 9

−c? 9 9 9 9 −dr1 9

9 9 −c? 9 9 9 −dr1

L

H

H

H

H

H

H

H

H

l

"A6#

Rji � RT
ij "A7#

where c? � cu−cr[
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